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ABSTRACT 

 

This paper discusses the design and implementation of 

Micronet, a testbed that enables realistic, over-the-air 

software-defined radio (SDR), cognitive radio (CR), 

and dynamic spectrum access (DSA) experimentation 

and demonstration at low cost. The system can be ex-

tended to enable larger scale experimentation at moder-

ate cost, making it well suited for quick prototyping or 

proof-of-concept demonstrations of experimental sys-

tems or operational concepts for limited-resource edu-

cational and research purposes. Through use of a simi-

lar interface, the testbed prepares users for remote use 

of more capable testbeds, such as Virginia Tech’s 

CORNET, for large-scale and high-bandwidth applica-

tions. Micronet is a tangible alternative to large scale 

testbeds. It can be locally controlled and configured in a 

few steps for setting up popular education and research 

environments. 

 

1. INTRODUCTION 

 

Software-defined radio (SDR) enables the dynamic 

reconfiguration of radio transmission modes [1]. The 

software can make efficient use of the available hard-

ware and the environmental conditions. A cognitive 

radio (CR) system makes use of an SDR platform for 

this purpose. A CR system can have different facets, 

but typically involves observing (spectrum awareness), 

learning (cognition /intelligence) and decision making 

(reconfiguration) [2]. CR can make efficient use of ra-

dio and computing resources in combination with SDR 

and a flexibly regulated frequency allocation system 

that is shared among its users, known as dynamic spec-

trum access (DSA). 

 SDR and CR research has existed for 1-2 decades 

already, but their potential is far from being fully ex-

ploited in practice. Several research contributions lack 

practical relevance, because they are either too complex 

to be implemented or lack the necessary development 

and deployment tools. Being able to implement and test 

a cognitive engine—the brain of the observing-

learning-decision making cycle—for instance, is essen-

tial for moving from the theoretical analysis and simu-

lations to demonstrations and prototypes. One popular 

approach for this is the use of wireless testbeds. 

 Testbeds have played an important role in the de-

velopment of networking technologies since the first 

computer networks were developed. They help advanc-

ing wireless technology by enabling quick prototyping 

and testing in realistic setups.  

 The WINLAB ORBIT testbed at Rutgers Universi-

ty is a large-scale wireless network testbed with over 

400 nodes, each consisting of a PC equipped with 

802.11 a/b/g network cards and supplemented with 

flexible radio frequency (RF) platforms to exploit phys-

ical layer adaptations [3]. The testbed expands over a 

20 × 20 m2 grid. The wireless networking research 

group at the University of California, Riverside, has 

deployed a testbed consisting of fifty-eight 802.11 wire-

less nodes with additional multiple-input multiple-

output (MIMO) cards, 15 laptops connected to Univer-

sal Software Radio Peripherals (USRPs) from Ettus 

Research, and 6 laptops connected to the Rice Universi-

ty WARP radios [4]. Like ORBIT, the majority of the 

nodes in this testbed are targeted to upper layer network 

protocol research. However, unlike ORBIT, this testbed 

includes both the USRP and the WARP boards, which 

have flexible and powerful processors onboard. The 

Emulab research facility at the University of Utah is 

another large-scale testbed of approximately 275 nodes 

that recently supplemented with USRPs [5]. Virginia 

Tech’s CORNET consists of 48 SDR nodes—

distributed USRP 2s, each connected to a server—in a 

research building of Virginia Tech’s main campus in 

Blacksburg, Virginia. These nodes are at fixed indoor 

locations. Mobile and outdoor nodes are currently being 

deployed. The use of CORNET is free. Registered users 

can schedule nodes and login remotely to control one or 

several nodes and run a variety of experiments [6]. 



  

 

 Large-scale testbeds are a valuable resource for 

research and education, but often lack full transparency 

because they are operated remotely. Whereas most re-

searchers are familiar with this kind of access, others 

might prefer seeing the hardware they are operating and 

be able to observe the effects of physical changes to the 

testbed topology. The Micro Cognitive Radio Network 

Testbed (Micronet) provides this alternative.  

 A major motivation for Micronet is to combine the 

available hardware and software resources into a useful 

collection for SDR/CR. Micronet intends to be a proto-

type of a collection of small-scale, wireless communi-

cations testbeds that are creatively assembled using 

heterogeneous hardware pieces, upon availability.  

 Micronet is a modular design that uses PCs with 

modest performance, commodity digital video broad-

cast (DVB) tuners/receive-only SDR RF front ends, and 

optionally, SDR transceivers. Relatively short transmit-

receive distances facilitate unlicensed operation, e.g., 

under FCC Part 15 rules, and use of laptop computers 

enables the system to be set up and taken down quickly 

for use during class time or demonstrations if no dedi-

cated space is available.  Use of open-source software 

allows packaging of system software as well as SDR 

toolkits and demonstration applications on live DVDs 

or bootable flash drives for turn-key installation on us-

er-supplied hardware. 

 Micronet presents a more tangible way to get a first 

research experience in SDR/CR, and thus may also 

serve as a stepping stone for using larger testbeds, such 

as CORNET, for running more sophisticated cognitive 

radio or related experiments. Micronet is ideal for stu-

dents and new researchers in the area who want to have 

their own testbed despite limited resources and moder-

ate technical background. Our goal is to show how sys-

tems like Micronet can be created with much less diffi-

culty and time commitment than might be expected. 

 The basic concept of Micronet is modeled after 

CORNET, which provides access to common SDR de-

sign and rapid prototyping tools. Some of these tools 

are briefly described in Section 2. In Section 3 we ex-

plain Micronet’s design tradeoffs, followed by 

Micronet’s setup and initial results in Section 4. Section 

5 concludes the paper. 

 

2. SDR DESIGN TOOLS 

 

Research and development has been conducted in the 

area of SDR in the past 15-20 years and there are many 

resources available for research, development and edu-

cation. Since SDR is by definition primarily a function 

of software, new capabilities can be added to the exist-

ing toolboxes, without any need to update hardware. 

 

2.1 SDR Frameworks 

SDR frameworks have emerged after the software 

communications architecture (SCA) was first intro-

duced by the Department of Defense in 1999. An SDR 

framework facilitates the waveform development and 

deployment on different hardware platforms (waveform 

portability). Design and deployment tools for rapid pro-

totyping and testing complement the framework. Most 

SDR frameworks are proprietary, developed by compa-

nies for their customers’ needs, whereas others are open 

source. Popular open-source frameworks include Vir-

ginia Tech’s Open-Source SCA Implementation-

Embedded (OSSIE) [8], which evolved to REDHAWK, 

IRIS [9], which was developed at Trinity College Dub-

lin, Ireland, and Abstraction Layer and Operating Envi-

ronment (ALOE) [10] [11], developed at Polytechnic 

University of Catalonia, Spain. Interestingly, the devel-

opment of all three frameworks started at about the 

same time, around 2004. 

 All three frameworks allow distributed processing. 

OSSIE/REDHAWK was built for education at Virginia 

Tech and elsewhere on SCA and SDR, in general, and 

has been adopted by many R&D projects. It relies on 

CORBA middleware as does SCA. ALOE provides a 

lightweight operating environment for distributed 

waveform processing. It enables platform independ-

ence—both waveform portability and performance—

and provides hard real-time distributed processing con-

trol. IRIS has been specifically designed for cognitive 

radio research and development and has demonstrated 

DSA capability. 

 

2.2 GNU Radio 

GNU Radio is a popular open-source SDR tool for re-

search and education [12]. It includes an extensive li-

brary of signal processing blocks and user interfaces 

that are connected to produce SDR waveforms or flow 

graphs. GNU Radio Companion (GRC) allows users to 

build flow graphs by assembling a block diagram of 

their system, connecting the blocks, and setting parame-

ter values for the desired operation. GRC also allows 

the specification of a user interface with embedded con-

trols, such as sliders and text boxes. Users can execute 

flow graphs developed with GRC, edit the correspond-



  

 

ing Python code, or program their own GNU Radio 

applications in C++/Python. In addition to the library of 

blocks and examples provided with GNU Radio, third 

party applications are available through the Compre-

hensive GNU Radio Archive Network (CGRAN) as 

well as elsewhere on the Internet. The GNU Radio user 

community is continuously growing and provides sup-

port to new users and solutions to specific problems. 

 

2.3 Waveform Projects 

Open source waveform packages make it possible to 

experiment with a variety of radio standards. There are 

many completed packages and many more are under 

development. For example, OpenBTS [16] is a software 

package that allows an SDR peripheral to be used as a 

2G cellular basestation based on the GSM standard. 

Similarly, a couple of open-source LTE projects are 

ongoing [11] [17] and, once mature, will allow users to 

modulate and demodulate LTE signals. All these initia-

tives need a computing platform and they can be inte-

grated as part of the testbed. Micronet may not be able 

to support the entire LTE processing stack due its pro-

cessing limitations, but specific LTE channels or sim-

plified LTE versions may be able to run on Micronet 

for educational or research purposes. 

 

3. MICRONET DESIGN TRADEOFFS 

 

Many decisions had to be made in terms of how to set 

up the testbed. We will discuss some of the options here 

followed by a description of what was actually imple-

mented and why. That is, we identify the tradeoffs and 

rationale for our selection process from among alterna-

tive approaches so that others interested in building a 

testbed for similar purposes may benefit from our prior 

work. The critical components to be selected are the RF 

front end, the processing platform, and the interface 

among the radio front ends and the processors. Our goal 

was to use open source platforms that provide the nec-

essary functionality. Using open source tools allows 

more flexibility in developing applications and experi-

ments. 

 

3.1. RF Boards 

There are several alternatives for the RF front ends. The 

selection of which to use is a function of the testbed’s 

purpose. For example, one of the demonstration appli-

cations planned for Micronet is an SDR positioning 

system. In this experiment the signal is never demodu-

lated, and so the modulation is irrelevant as long as the 

envelope of the signal is constant. In this case, we can 

implement an extremely inexpensive system using only 

RTL-SDRs [7] as the sensing or receiver nodes, imple-

menting the position locating algorithm, and a simple 

FM transmitter for the device to be tracked. This illus-

trative example shows the ability to tailor the testbed to 

a use case or set of use cases as required. 

 A more general testbed that can handle a range of 

experiments would need hardware capable of convert-

ing complex baseband signals to RF. The most inex-

pensive options with this capability are the HackRF 

[18] and the BladeRF [19]; two SDR transceivers that 

offer wide baseband and RF bandwidths. Both of these 

options are more expensive than all the other compo-

nents of Micronet combined though. A good compro-

mise for Micronet is to use the Raspberry Pi (discussed 

in the next section) as an FM transmitter, an unintended 

capability that was discovered recently by the Imperial 

College Robotics Society. With this approach it is pos-

sible to use Frequency Modulation, Frequency Shift 

Keying, and possibly On-Off Keying. The only addi-

tional hardware needed is a 15-20 cm wire to act as an 

antenna. We are in the process of developing a GNU 

Radio block to more readily incorporate the Raspberry 

Pi as a transmitter for Micronet. 

 

3.2. Processing Boards 

Regardless of the RF front end, off-board processors 

are often required to operate the front end. There are a 

range of options. The type and number of processors 

need to be selected depending on the users’ require-

ments. Since the goal of Micronet is to be mobile, flex-

ible and low-cost, an inexpensive netbook was selected 

as the primary processor. 

The Raspberry Pi and BeagleBone Black are low-

cost ARM processor-based single-board computers that 

can be used to capture data for RTL-SDR front ends, 

connected to the main network using TCP over Ether-

net. Processing power is limited, but an FM signal can 

easily be captured and sent over TCP on the Raspberry 

Pi without any performance optimization. It is also pos-

sible to script the Raspberry Pi to act as a spectrum ana-

lyzer, which would be useful for spectrum sensing in 

DSA experiments. GNU Radio is straightforward to 

install, which may allow for lightweight on board DSP, 

such as calculating average power in a channel or de-

modulating narrowband signals. 

 



  

 

3.3. Computing Topology and Interfaces 

A major question is what kind of interface to use among 

the RF front ends and processors. CORNET employs a 

dedicated server for each radio, providing dedicated 

bandwidth and processing power for sophisticated DSP. 

Since the resources of Micronet are limited by design, 

other options need to be considered. The most straight-

forward method would be an all-USB interface. Every 

node, be it an RTL-SDR or a USRP, would be connect-

ed to a single PC via USB. The potential issues of this 

setup are the demand for processing power and inter-

face capacity bottlenecks. USB extensions can be used 

to spatially separate the SDR nodes by up to 40 ft. 

(~12m) from the central PC. This distance should offer 

more than enough space to conduct the planned exper-

iments for Micronet. The other option is to have multi-

ple processors, each serving either a single or several 

SDR peripherals. This could prove to be a useful strate-

gy if an application requires greater separation than 

USB cables allow, if the central processor is not power-

ful enough to handle all the peripherals at once, or if the 

desired location of the nodes is somehow separated, 

making it difficult to physically connect them. Data can 

be transferred between nodes via TCP over a LAN very 

easily using GNU Radio. 

An important consideration when using a net-

worked implementation as described above is how to 

divide the signal processing between nodes. For exam-

ple, an FM receiver was implemented using an RTL-

SDR connected to a small netbook, which was then 

connected to a primary PC via TCP. It was more effi-

cient to demodulate the signal on the netbook and send 

an audio signal over TCP than to send the raw samples 

to be demodulated by the primary PC. This is certainly 

a function of many variables including the processing 

power of the PCs used and the application, but it illus-

trates the important concept of signal processing opti-

mization in CR environments. Also noteworthy is the 

ability to set up Micronet on an ad-hoc network, allow-

ing for demonstrations to be done regardless of availa-

ble connections to an external network. 

 

3.4. Operating System and Software Development 

Tools 

3.4.1. Operating System 

Ubuntu 12.04 LTS was selected as the operating system 

(OS) for Micronet due to software compatibility and 

long term support. Several software packages were con-

sidered for use with Micronet. Selected packages are 

included in the Micronet images, and documentation on 

how to install and use other relevant packages will be 

made available through the CORNET website [6]. 

 

3.4.2. SDR Development and Deployment Tools 

GNU Radio was selected as the initial waveform devel-

opment tool because of its open source nature, ease of 

use, and the functionality and community support it 

offers. Also, the graphical interface of GNU Radio 

Companion is very intuitive to use and provides readi-

ly-available digital signal processing blocks. 

REDHAWK [21], Octave, or Matlab are also strong 

candidates for future integration based on their capabili-

ties. 

Liquid DSP [22], an open-source signal processing 

library for SDRs, is also included in the default 

Micronet image as a supplementary DSP package. It 

offers a variety of C-language, Physical layer DSP 

functions that can be compiled and chained, e.g., using 

C or C++, without relying on any framework or exter-

nal dependencies. 

 

3.4.3. Accessibility 

Other software that is useful for administrative purpos-

es included XRDP and cluster secure shell (SSH). 

XRDP is a remote desktop client, which may be con-

venient for educational purposes as opposed to a com-

mand line interface. Cluster SSH is an application that 

enables a user to control multiple SSH sessions from a 

single terminal, which is useful for controlling a testbed 

that contains several nodes performing the same func-

tion. If, for instance, an array of receivers were used to 

characterize signal propagation through a building, 

Cluster SSH would allow activation of all nodes at 

once. 

 

4. ANALYSIS 

 

A functional testbed and quantifiable results are the 

primary deliverables of this initiative. Specifically we 

are interested in how many SDR nodes Micronet can 

support and what they will be capable of doing. Various 

experiments were conducted using Micronet in order to 

provide a reasonable answer to this question. The “top” 

utility available in Ubuntu was used to monitor CPU 

usage during these experiments in order to provide in-

sight into the limit of SDR nodes that can be supported 

and the complexity of DSP that can be implemented. 



  

 

4.1 Micronet Hardware 

Currently, Micronet consists of a Dell Latitude 2100 

netbook (dual-core, 1.6 GHz Intel Atom processor with 

1 Gb RAM) [13], with three RTL2832 R820T tuners 

[14] connected by USB, and an additional RTL2832 

E4000 tuner [15] that is connected via TCP over LAN 

using a Raspberry Pi (Fig. 1). The E4000 tuner was 

found to be more readily compatible with the Raspberry 

Pi. The total cost of this testbed was under $250. A bill 

of materials is shown below. 

 

Table I – Bill of Materials for Micronet. 

Item Qty Supplier 

Dell Latitude 2100 1 Ebay (used) 

Raspberry Pi 1 Newark 

RTL2832 R820T 3 Ebay 

RTL2832 E4000 1 Ebay 

8 Gb SD Card 1 Best Buy 

10’ USB Extension 3 Sweetwater 

Micro USB power cable 1 MCM Electron-

ics 

Ethernet cable 2 Rakuten.com 

TP-Link Ethernet Switch 1 Newegg 
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(b) 

Fig 1.  Micronet hardware: (a) block diagram (b) photo  

 

4.2 Experiments 

4.2.1. FM Receivers 

With the above hardware configuration we are able to 

run various GNU Radio signal flow graphs (Figs. 5-7 at 

the end of the paper). In particular, we simultaneously 

sampled the four RTL input data streams at 1.024 Msps 

and FM demodulated each signal, saving the resulting 

audio to .wav files. The CPU load during this process 

was on average 90%, indicating that this example hits 

Micronet’s approximate maximum capacity in its cur-

rent configuration.  

 

4.2.2. Processing Loads of Different Flow Graphs 

The CPU usage was measured during the execution of 

various flow graphs including those shown in Figures 

5-7. Figure 2 below depicts these CPU loads. These 

flows include FM demodulation of a single RTL-SDR, 

data capture using one, two and three RTL-SDRs, and 

FM demodulation and data capture of an RTL-SDR 

connected via TCP using the Raspberry Pi. Each curve 

begins at approximately the minimum sampling rate of 

the RTL2832 and continues until the load on the CPU 

causes glitching. Note that these are averages, which is 

why many curves do not get very close to 100% CPU 

usage. CPU usage is time varying in nature due to many 

factors including OS overhead, file I/O, and connectivi-

ty to the LAN. As such, a processing burst can cause 

the application to stall and ultimately quit even though 

the average CPU usage was far below 100 %.  

 This data indicates the limits of Micronet’s capabil-

ities in terms of maximum sample rate that can be 

achieved for each experiment. The curves in Fig. 2 in-

dicate that the CPU usage is roughly proportional to the 

sampling rate of the RTL’s. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. CPU load while executing various signal flows. 

 



 
 

 

4.2.3. Spectrum Sensing 

An important feature for any CR testbed is the ability to 

observe the radio environment. This is important in 

applications such as DSA, as a radio may need to sense 

where the spectrum is and is not being used. 

is capable of reading data from all four 

RTL dongles and saving this data as

later processing or performing other light weight DSP

such as FM demodulation. In other words, real

spectrum sensing is possible for all four nodes simult

neously, yielding a total observable bandwidth of 4

MHz. If real-time spectrum sensing is not required, 

another option is to have the Raspberry Pi save wav

forms or other data locally and then copy the 

files over to the main PC afterwards for post pr

cessing. 

 It may also be desirable to look at 

radio spectrum that are wider than the bandwidth of 

single RTL, or even all four RTL’s. For this reason 

Micronet has included the RTLSDR-Scanner GUI

as well as a custom script which appears to be faster 

and more configurable. These spectrum sensing met

ods are not real time, as they function by sweeping the 

RF center frequency of the RTL across the desired 

band, collecting data at each step. Even so, these met

ods can provide useful information into the 

usage over large bandwidths. A plot of the

band that was obtained using the custom

cluded below in figure 3. In this plot, various FM st

tions can easily be identified, the strongest of which are 

90.7, 94.9, 99.1, and 105.3 MHz. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3. A plot of the FM band as sensed with an RTL SDR

Approximate sweep time is 2.5 s. 
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4.2.4. Additional Experiments 

Many additional experiments will be feasible 

Micronet in areas such as SDR position estimation, 

antenna diversity, lightweight DSA algorithms

coexistence with CORNET. Once the Raspberry Pi has 

been further matured as an SDR transmitter, it will open 

up other possibilities for experiments involving data 

throughput, BER, and channel coding

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4. Micronet versus CORNET. 

 

5. CONCLUSIONS

 

Micronet proves that it is possible to 

at low cost. It demonstrates the capabilities

limitations of using inexpensive SDR hardware for CR 

applications. These limitations include bandwidth, pr

cessing power, and spatial constraints. Several methods 

for circumventing these limitations were discussed and 

include the use of low cost processors attached to each 

node to reduce the processing burden on the cent

allow for greater spatial separation of the nodes, and 

some degree of distributed computing

An additional objective of Micronet is 

tial reference for leveraging CR research and education

while not relying on expensive equipment

continue to develop Micronet by experimenting with 

other hardware platforms and software

ing additional demonstrations, and making resources 

and tools available as open source for others to use.
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veloping a GNU Radio block to utilize the Raspberry Pi 

as an FM transmitter along with additional experiments 

and demonstrations that include antenna diversity, di-

rectional antennas, and position estimation.  
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Fig. 5. Interactive RTL-SDR FM radio receiver flow graph
 
 
 

 

Fig. 6. 3x RTL-SDR data capture (3x_RTL_Sense.grc

 

FM radio receiver flow graph (RTL_FM_Radio.grc). 

 
Fig. 7. 3x RTL-SDR FM receiver and data 
(3x_RTL_FM_Demodulation.grc). 3x_RTL_Sense.grc). 

 


