

MICRO COGNITIVE RADIO NETWORK TESTBED (MICRONET) FOR

EDUCATION, EXPERIMENTATION, AND DEMONSTRATION

Eric Sollenberger, Vuk Marojevic, Carl Dietrich

Virginia Tech
Blacksburg, VA, US

ericps1@vt.edu, maroje@vt.edu, cdietric@vt.edu

ABSTRACT

This paper discusses the design and implementation of

Micronet, a testbed that enables realistic, over-the-air

software-defined radio (SDR), cognitive radio (CR),

and dynamic spectrum access (DSA) experimentation

and demonstration at low cost. The system can be ex-

tended to enable larger scale experimentation at moder-

ate cost, making it well suited for quick prototyping or

proof-of-concept demonstrations of experimental sys-

tems or operational concepts for limited-resource edu-

cational and research purposes. Through use of a simi-

lar interface, the testbed prepares users for remote use

of more capable testbeds, such as Virginia Tech’s

CORNET, for large-scale and high-bandwidth applica-

tions. Micronet is a tangible alternative to large scale

testbeds. It can be locally controlled and configured in a

few steps for setting up popular education and research

environments.

1. INTRODUCTION

Software-defined radio (SDR) enables the dynamic

reconfiguration of radio transmission modes [1]. The

software can make efficient use of the available hard-

ware and the environmental conditions. A cognitive

radio (CR) system makes use of an SDR platform for

this purpose. A CR system can have different facets,

but typically involves observing (spectrum awareness),

learning (cognition /intelligence) and decision making

(reconfiguration) [2]. CR can make efficient use of ra-

dio and computing resources in combination with SDR

and a flexibly regulated frequency allocation system

that is shared among its users, known as dynamic spec-

trum access (DSA).

 SDR and CR research has existed for 1-2 decades

already, but their potential is far from being fully ex-

ploited in practice. Several research contributions lack

practical relevance, because they are either too complex

to be implemented or lack the necessary development

and deployment tools. Being able to implement and test

a cognitive engine—the brain of the observing-

learning-decision making cycle—for instance, is essen-

tial for moving from the theoretical analysis and simu-

lations to demonstrations and prototypes. One popular

approach for this is the use of wireless testbeds.

 Testbeds have played an important role in the de-

velopment of networking technologies since the first

computer networks were developed. They help advanc-

ing wireless technology by enabling quick prototyping

and testing in realistic setups.

 The WINLAB ORBIT testbed at Rutgers Universi-

ty is a large-scale wireless network testbed with over

400 nodes, each consisting of a PC equipped with

802.11 a/b/g network cards and supplemented with

flexible radio frequency (RF) platforms to exploit phys-

ical layer adaptations [3]. The testbed expands over a

20 × 20 m2 grid. The wireless networking research

group at the University of California, Riverside, has

deployed a testbed consisting of fifty-eight 802.11 wire-

less nodes with additional multiple-input multiple-

output (MIMO) cards, 15 laptops connected to Univer-

sal Software Radio Peripherals (USRPs) from Ettus

Research, and 6 laptops connected to the Rice Universi-

ty WARP radios [4]. Like ORBIT, the majority of the

nodes in this testbed are targeted to upper layer network

protocol research. However, unlike ORBIT, this testbed

includes both the USRP and the WARP boards, which

have flexible and powerful processors onboard. The

Emulab research facility at the University of Utah is

another large-scale testbed of approximately 275 nodes

that recently supplemented with USRPs [5]. Virginia

Tech’s CORNET consists of 48 SDR nodes—

distributed USRP 2s, each connected to a server—in a

research building of Virginia Tech’s main campus in

Blacksburg, Virginia. These nodes are at fixed indoor

locations. Mobile and outdoor nodes are currently being

deployed. The use of CORNET is free. Registered users

can schedule nodes and login remotely to control one or

several nodes and run a variety of experiments [6].

 Large-scale testbeds are a valuable resource for

research and education, but often lack full transparency

because they are operated remotely. Whereas most re-

searchers are familiar with this kind of access, others

might prefer seeing the hardware they are operating and

be able to observe the effects of physical changes to the

testbed topology. The Micro Cognitive Radio Network

Testbed (Micronet) provides this alternative.

 A major motivation for Micronet is to combine the

available hardware and software resources into a useful

collection for SDR/CR. Micronet intends to be a proto-

type of a collection of small-scale, wireless communi-

cations testbeds that are creatively assembled using

heterogeneous hardware pieces, upon availability.

 Micronet is a modular design that uses PCs with

modest performance, commodity digital video broad-

cast (DVB) tuners/receive-only SDR RF front ends, and

optionally, SDR transceivers. Relatively short transmit-

receive distances facilitate unlicensed operation, e.g.,

under FCC Part 15 rules, and use of laptop computers

enables the system to be set up and taken down quickly

for use during class time or demonstrations if no dedi-

cated space is available. Use of open-source software

allows packaging of system software as well as SDR

toolkits and demonstration applications on live DVDs

or bootable flash drives for turn-key installation on us-

er-supplied hardware.

 Micronet presents a more tangible way to get a first

research experience in SDR/CR, and thus may also

serve as a stepping stone for using larger testbeds, such

as CORNET, for running more sophisticated cognitive

radio or related experiments. Micronet is ideal for stu-

dents and new researchers in the area who want to have

their own testbed despite limited resources and moder-

ate technical background. Our goal is to show how sys-

tems like Micronet can be created with much less diffi-

culty and time commitment than might be expected.

 The basic concept of Micronet is modeled after

CORNET, which provides access to common SDR de-

sign and rapid prototyping tools. Some of these tools

are briefly described in Section 2. In Section 3 we ex-

plain Micronet’s design tradeoffs, followed by

Micronet’s setup and initial results in Section 4. Section

5 concludes the paper.

2. SDR DESIGN TOOLS

Research and development has been conducted in the

area of SDR in the past 15-20 years and there are many

resources available for research, development and edu-

cation. Since SDR is by definition primarily a function

of software, new capabilities can be added to the exist-

ing toolboxes, without any need to update hardware.

2.1 SDR Frameworks

SDR frameworks have emerged after the software

communications architecture (SCA) was first intro-

duced by the Department of Defense in 1999. An SDR

framework facilitates the waveform development and

deployment on different hardware platforms (waveform

portability). Design and deployment tools for rapid pro-

totyping and testing complement the framework. Most

SDR frameworks are proprietary, developed by compa-

nies for their customers’ needs, whereas others are open

source. Popular open-source frameworks include Vir-

ginia Tech’s Open-Source SCA Implementation-

Embedded (OSSIE) [8], which evolved to REDHAWK,

IRIS [9], which was developed at Trinity College Dub-

lin, Ireland, and Abstraction Layer and Operating Envi-

ronment (ALOE) [10] [11], developed at Polytechnic

University of Catalonia, Spain. Interestingly, the devel-

opment of all three frameworks started at about the

same time, around 2004.

 All three frameworks allow distributed processing.

OSSIE/REDHAWK was built for education at Virginia

Tech and elsewhere on SCA and SDR, in general, and

has been adopted by many R&D projects. It relies on

CORBA middleware as does SCA. ALOE provides a

lightweight operating environment for distributed

waveform processing. It enables platform independ-

ence—both waveform portability and performance—

and provides hard real-time distributed processing con-

trol. IRIS has been specifically designed for cognitive

radio research and development and has demonstrated

DSA capability.

2.2 GNU Radio

GNU Radio is a popular open-source SDR tool for re-

search and education [12]. It includes an extensive li-

brary of signal processing blocks and user interfaces

that are connected to produce SDR waveforms or flow

graphs. GNU Radio Companion (GRC) allows users to

build flow graphs by assembling a block diagram of

their system, connecting the blocks, and setting parame-

ter values for the desired operation. GRC also allows

the specification of a user interface with embedded con-

trols, such as sliders and text boxes. Users can execute

flow graphs developed with GRC, edit the correspond-

ing Python code, or program their own GNU Radio

applications in C++/Python. In addition to the library of

blocks and examples provided with GNU Radio, third

party applications are available through the Compre-

hensive GNU Radio Archive Network (CGRAN) as

well as elsewhere on the Internet. The GNU Radio user

community is continuously growing and provides sup-

port to new users and solutions to specific problems.

2.3 Waveform Projects

Open source waveform packages make it possible to

experiment with a variety of radio standards. There are

many completed packages and many more are under

development. For example, OpenBTS [16] is a software

package that allows an SDR peripheral to be used as a

2G cellular basestation based on the GSM standard.

Similarly, a couple of open-source LTE projects are

ongoing [11] [17] and, once mature, will allow users to

modulate and demodulate LTE signals. All these initia-

tives need a computing platform and they can be inte-

grated as part of the testbed. Micronet may not be able

to support the entire LTE processing stack due its pro-

cessing limitations, but specific LTE channels or sim-

plified LTE versions may be able to run on Micronet

for educational or research purposes.

3. MICRONET DESIGN TRADEOFFS

Many decisions had to be made in terms of how to set

up the testbed. We will discuss some of the options here

followed by a description of what was actually imple-

mented and why. That is, we identify the tradeoffs and

rationale for our selection process from among alterna-

tive approaches so that others interested in building a

testbed for similar purposes may benefit from our prior

work. The critical components to be selected are the RF

front end, the processing platform, and the interface

among the radio front ends and the processors. Our goal

was to use open source platforms that provide the nec-

essary functionality. Using open source tools allows

more flexibility in developing applications and experi-

ments.

3.1. RF Boards

There are several alternatives for the RF front ends. The

selection of which to use is a function of the testbed’s

purpose. For example, one of the demonstration appli-

cations planned for Micronet is an SDR positioning

system. In this experiment the signal is never demodu-

lated, and so the modulation is irrelevant as long as the

envelope of the signal is constant. In this case, we can

implement an extremely inexpensive system using only

RTL-SDRs [7] as the sensing or receiver nodes, imple-

menting the position locating algorithm, and a simple

FM transmitter for the device to be tracked. This illus-

trative example shows the ability to tailor the testbed to

a use case or set of use cases as required.

 A more general testbed that can handle a range of

experiments would need hardware capable of convert-

ing complex baseband signals to RF. The most inex-

pensive options with this capability are the HackRF

[18] and the BladeRF [19]; two SDR transceivers that

offer wide baseband and RF bandwidths. Both of these

options are more expensive than all the other compo-

nents of Micronet combined though. A good compro-

mise for Micronet is to use the Raspberry Pi (discussed

in the next section) as an FM transmitter, an unintended

capability that was discovered recently by the Imperial

College Robotics Society. With this approach it is pos-

sible to use Frequency Modulation, Frequency Shift

Keying, and possibly On-Off Keying. The only addi-

tional hardware needed is a 15-20 cm wire to act as an

antenna. We are in the process of developing a GNU

Radio block to more readily incorporate the Raspberry

Pi as a transmitter for Micronet.

3.2. Processing Boards

Regardless of the RF front end, off-board processors

are often required to operate the front end. There are a

range of options. The type and number of processors

need to be selected depending on the users’ require-

ments. Since the goal of Micronet is to be mobile, flex-

ible and low-cost, an inexpensive netbook was selected

as the primary processor.

The Raspberry Pi and BeagleBone Black are low-

cost ARM processor-based single-board computers that

can be used to capture data for RTL-SDR front ends,

connected to the main network using TCP over Ether-

net. Processing power is limited, but an FM signal can

easily be captured and sent over TCP on the Raspberry

Pi without any performance optimization. It is also pos-

sible to script the Raspberry Pi to act as a spectrum ana-

lyzer, which would be useful for spectrum sensing in

DSA experiments. GNU Radio is straightforward to

install, which may allow for lightweight on board DSP,

such as calculating average power in a channel or de-

modulating narrowband signals.

3.3. Computing Topology and Interfaces

A major question is what kind of interface to use among

the RF front ends and processors. CORNET employs a

dedicated server for each radio, providing dedicated

bandwidth and processing power for sophisticated DSP.

Since the resources of Micronet are limited by design,

other options need to be considered. The most straight-

forward method would be an all-USB interface. Every

node, be it an RTL-SDR or a USRP, would be connect-

ed to a single PC via USB. The potential issues of this

setup are the demand for processing power and inter-

face capacity bottlenecks. USB extensions can be used

to spatially separate the SDR nodes by up to 40 ft.

(~12m) from the central PC. This distance should offer

more than enough space to conduct the planned exper-

iments for Micronet. The other option is to have multi-

ple processors, each serving either a single or several

SDR peripherals. This could prove to be a useful strate-

gy if an application requires greater separation than

USB cables allow, if the central processor is not power-

ful enough to handle all the peripherals at once, or if the

desired location of the nodes is somehow separated,

making it difficult to physically connect them. Data can

be transferred between nodes via TCP over a LAN very

easily using GNU Radio.

An important consideration when using a net-

worked implementation as described above is how to

divide the signal processing between nodes. For exam-

ple, an FM receiver was implemented using an RTL-

SDR connected to a small netbook, which was then

connected to a primary PC via TCP. It was more effi-

cient to demodulate the signal on the netbook and send

an audio signal over TCP than to send the raw samples

to be demodulated by the primary PC. This is certainly

a function of many variables including the processing

power of the PCs used and the application, but it illus-

trates the important concept of signal processing opti-

mization in CR environments. Also noteworthy is the

ability to set up Micronet on an ad-hoc network, allow-

ing for demonstrations to be done regardless of availa-

ble connections to an external network.

3.4. Operating System and Software Development

Tools

3.4.1. Operating System

Ubuntu 12.04 LTS was selected as the operating system

(OS) for Micronet due to software compatibility and

long term support. Several software packages were con-

sidered for use with Micronet. Selected packages are

included in the Micronet images, and documentation on

how to install and use other relevant packages will be

made available through the CORNET website [6].

3.4.2. SDR Development and Deployment Tools

GNU Radio was selected as the initial waveform devel-

opment tool because of its open source nature, ease of

use, and the functionality and community support it

offers. Also, the graphical interface of GNU Radio

Companion is very intuitive to use and provides readi-

ly-available digital signal processing blocks.

REDHAWK [21], Octave, or Matlab are also strong

candidates for future integration based on their capabili-

ties.

Liquid DSP [22], an open-source signal processing

library for SDRs, is also included in the default

Micronet image as a supplementary DSP package. It

offers a variety of C-language, Physical layer DSP

functions that can be compiled and chained, e.g., using

C or C++, without relying on any framework or exter-

nal dependencies.

3.4.3. Accessibility

Other software that is useful for administrative purpos-

es included XRDP and cluster secure shell (SSH).

XRDP is a remote desktop client, which may be con-

venient for educational purposes as opposed to a com-

mand line interface. Cluster SSH is an application that

enables a user to control multiple SSH sessions from a

single terminal, which is useful for controlling a testbed

that contains several nodes performing the same func-

tion. If, for instance, an array of receivers were used to

characterize signal propagation through a building,

Cluster SSH would allow activation of all nodes at

once.

4. ANALYSIS

A functional testbed and quantifiable results are the

primary deliverables of this initiative. Specifically we

are interested in how many SDR nodes Micronet can

support and what they will be capable of doing. Various

experiments were conducted using Micronet in order to

provide a reasonable answer to this question. The “top”

utility available in Ubuntu was used to monitor CPU

usage during these experiments in order to provide in-

sight into the limit of SDR nodes that can be supported

and the complexity of DSP that can be implemented.

4.1 Micronet Hardware

Currently, Micronet consists of a Dell Latitude 2100

netbook (dual-core, 1.6 GHz Intel Atom processor with

1 Gb RAM) [13], with three RTL2832 R820T tuners

[14] connected by USB, and an additional RTL2832

E4000 tuner [15] that is connected via TCP over LAN

using a Raspberry Pi (Fig. 1). The E4000 tuner was

found to be more readily compatible with the Raspberry

Pi. The total cost of this testbed was under $250. A bill

of materials is shown below.

Table I – Bill of Materials for Micronet.

Item Qty Supplier

Dell Latitude 2100 1 Ebay (used)

Raspberry Pi 1 Newark

RTL2832 R820T 3 Ebay

RTL2832 E4000 1 Ebay

8 Gb SD Card 1 Best Buy

10’ USB Extension 3 Sweetwater

Micro USB power cable 1 MCM Electron-

ics

Ethernet cable 2 Rakuten.com

TP-Link Ethernet Switch 1 Newegg

(a)

(b)

Fig 1. Micronet hardware: (a) block diagram (b) photo

4.2 Experiments

4.2.1. FM Receivers

With the above hardware configuration we are able to

run various GNU Radio signal flow graphs (Figs. 5-7 at

the end of the paper). In particular, we simultaneously

sampled the four RTL input data streams at 1.024 Msps

and FM demodulated each signal, saving the resulting

audio to .wav files. The CPU load during this process

was on average 90%, indicating that this example hits

Micronet’s approximate maximum capacity in its cur-

rent configuration.

4.2.2. Processing Loads of Different Flow Graphs

The CPU usage was measured during the execution of

various flow graphs including those shown in Figures

5-7. Figure 2 below depicts these CPU loads. These

flows include FM demodulation of a single RTL-SDR,

data capture using one, two and three RTL-SDRs, and

FM demodulation and data capture of an RTL-SDR

connected via TCP using the Raspberry Pi. Each curve

begins at approximately the minimum sampling rate of

the RTL2832 and continues until the load on the CPU

causes glitching. Note that these are averages, which is

why many curves do not get very close to 100% CPU

usage. CPU usage is time varying in nature due to many

factors including OS overhead, file I/O, and connectivi-

ty to the LAN. As such, a processing burst can cause

the application to stall and ultimately quit even though

the average CPU usage was far below 100 %.

 This data indicates the limits of Micronet’s capabil-

ities in terms of maximum sample rate that can be

achieved for each experiment. The curves in Fig. 2 in-

dicate that the CPU usage is roughly proportional to the

sampling rate of the RTL’s.

Fig 2. CPU load while executing various signal flows.

4.2.3. Spectrum Sensing

An important feature for any CR testbed is the ability to

observe the radio environment. This is important in

applications such as DSA, as a radio may need to sense

where the spectrum is and is not being used.

is capable of reading data from all four

RTL dongles and saving this data as

later processing or performing other light weight DSP

such as FM demodulation. In other words, real

spectrum sensing is possible for all four nodes simult

neously, yielding a total observable bandwidth of 4

MHz. If real-time spectrum sensing is not required,

another option is to have the Raspberry Pi save wav

forms or other data locally and then copy the

files over to the main PC afterwards for post pr

cessing.

 It may also be desirable to look at

radio spectrum that are wider than the bandwidth of

single RTL, or even all four RTL’s. For this reason

Micronet has included the RTLSDR-Scanner GUI

as well as a custom script which appears to be faster

and more configurable. These spectrum sensing met

ods are not real time, as they function by sweeping the

RF center frequency of the RTL across the desired

band, collecting data at each step. Even so, these met

ods can provide useful information into the

usage over large bandwidths. A plot of the

band that was obtained using the custom

cluded below in figure 3. In this plot, various FM st

tions can easily be identified, the strongest of which are

90.7, 94.9, 99.1, and 105.3 MHz.

Fig 3. A plot of the FM band as sensed with an RTL SDR

Approximate sweep time is 2.5 s.

Spectrum Sense

feature for any CR testbed is the ability to

This is important in

applications such as DSA, as a radio may need to sense

where the spectrum is and is not being used. Micronet

is capable of reading data from all four of its connected

this data as binary files for

or performing other light weight DSP

In other words, real-time

spectrum sensing is possible for all four nodes simulta-

le bandwidth of 4-10

time spectrum sensing is not required,

is to have the Raspberry Pi save wave-

locally and then copy the resulting

over to the main PC afterwards for post pro-

esirable to look at sections of the

radio spectrum that are wider than the bandwidth of a

. For this reason

Scanner GUI [23]

appears to be faster

onfigurable. These spectrum sensing meth-

as they function by sweeping the

RF center frequency of the RTL across the desired

band, collecting data at each step. Even so, these meth-

provide useful information into the spectrum

A plot of the FM radio

the custom script is in-

In this plot, various FM sta-

tions can easily be identified, the strongest of which are

A plot of the FM band as sensed with an RTL SDR.

4.2.4. Additional Experiments

Many additional experiments will be feasible

Micronet in areas such as SDR position estimation,

antenna diversity, lightweight DSA algorithms

coexistence with CORNET. Once the Raspberry Pi has

been further matured as an SDR transmitter, it will open

up other possibilities for experiments involving data

throughput, BER, and channel coding

Fig 4. Micronet versus CORNET.

5. CONCLUSIONS

Micronet proves that it is possible to

at low cost. It demonstrates the capabilities

limitations of using inexpensive SDR hardware for CR

applications. These limitations include bandwidth, pr

cessing power, and spatial constraints. Several methods

for circumventing these limitations were discussed and

include the use of low cost processors attached to each

node to reduce the processing burden on the cent

allow for greater spatial separation of the nodes, and

some degree of distributed computing

An additional objective of Micronet is

tial reference for leveraging CR research and education

while not relying on expensive equipment

continue to develop Micronet by experimenting with

other hardware platforms and software

ing additional demonstrations, and making resources

and tools available as open source for others to use.

Micronet is an alternative to large-

as CORNET. Figure 4 quantifies the difference

sidering five key attributes. Current work includes

Spectrum Sense

Price ($)

Bandwidth (MHz)

Maximum Frequency (GHz)

<$100

100-1k

1k-10k

10k-100k

>100k

1 1

<1
1-5

5-20
20-60

>60

<1

1-2.5

2.5-6

6-30

>30

Handheld

Desk

Room

Building

experiments will be feasible using

such as SDR position estimation,

ty, lightweight DSA algorithms, and

Once the Raspberry Pi has

as an SDR transmitter, it will open

for experiments involving data

channel coding, for example.

5. CONCLUSIONS

Micronet proves that it is possible to build a CR testbed

at low cost. It demonstrates the capabilities, but also the

expensive SDR hardware for CR

clude bandwidth, pro-

straints. Several methods

tations were discussed and

the use of low cost processors attached to each

cessing burden on the central PC,

allow for greater spatial separation of the nodes, and

some degree of distributed computing between nodes.

objective of Micronet is to create an ini-

CR research and education

not relying on expensive equipment. We will

continue to develop Micronet by experimenting with

and software tools, develop-

tional demonstrations, and making resources

and tools available as open source for others to use.

-scale testbeds, such

quantifies the differences, con-

Current work includes de-

CORNET

Micronet

Radio Nodes

Size

1-5
5-25

25-50
50-100

Handheld

Building

City

veloping a GNU Radio block to utilize the Raspberry Pi

as an FM transmitter along with additional experiments

and demonstrations that include antenna diversity, di-

rectional antennas, and position estimation.

6. REFERENCES

[1] J. Mitola, “The software radio architecture,” IEEE

Commun. Mag., vol. 33, no. 5, pp. 26–38, May

1995.

[2] J. Mitola, III, “Cognitive radio: An integrated agent

architecture for software defined radio,” Ph.D. dis-

sertation, Royal Institute of Technology (KTH),

Stockholm, Sweden, May 2000.

[3] D. Raychaudhuri, et al., “Overview of the ORBIT

radio grid testbed for evaluation of next-generation

wireless network protocols,” Proc. IEEE Wireless

Communications and Networking Conf. (WCNC

2005), pp. 1644-1669.

[4] S. Gupta, C. Hunter, P. Murphy, and A. Sabharwal,

“WARPnet: clean slate research on deployed wire-

less networks,” Proc. 10
th ACM Int. Symp. Mobile

Ad Hoc Networking

(MibiHoc’09), pp. 31-332.

[5] M. Hibler, et al., “Large-scale Virtualization in the

Emulab Network Testbed,” Proc. 2008 USENIX

Annual Technical Conference, Boston, MA, 2008,

pp. 113-128.

[6] VT-CORNET Web Site,

http://cornet.wireless.vt.edu/trac/

[7] Michael Lustig, “RTL-SDR: Inexpensive Software

Defined Radio,” EE123: Digital Signal Processing,

Fall 2012, Dept. Electrical Engineering and Com-

puter Science, UC Berkeley,

http://inst.eecs.berkeley.edu/~ee123/fa12/rtl_sdr.ht

ml

[8] C. R. A. Gonzalez, et al., “Open-source SCA-based

core framework and rapid development tools ena-

ble software-defined radio education and research,”

IEEE Commun. Mag., Vol. 47, Iss. 10, Oct. 2009,

pp. 48-55.

[9] P. D. Sutton, et al., “Iris: An Architecture for Cog-

nitive Radio Networking Testbeds,” IEEE Commu.

Mag., Vol. 48, Iss. 9, pp. 114-122, Sept. 2010.

[10] I. Gomez, V. Marojevic, A. Gelonch, “ALOE: an

open-source SDR execution environment with

cognitive computing resource management capa-

bilities,” IEEE Commun. Mag., Vol. 49, Iss. 9, pp.

76-83, Sept. 2011.

[11] Distributed Real Time Framework for Software-

Defined Radio (SDR),

https://github.com/flexnets/aloe

[12] GNU Radio project web site, http://gnuradio.org

[13] Dell Latitude 2100 data sheet,

http://i.dell.com/sites/doccontent/shared-

content/data-sheets/en/Documents/laptop-latitude-

2100-specsheet.pdf

[14] R820T data sheet,

http://superkuh.com/gnuradio/R820T_datasheet-

Non_R-20111130_unlocked.pdf

[15] E4000 data sheet,

http://www.superkuh.com/gnuradio/Elonics-

E4000-Low-Power-CMOS-Multi-Band-Tunner-

Datasheet.pdf

[16] OpenBTS Web Site, http://openbts.org

[17] openLTE – An Open Source 3GPP LTE Implemen-

tation, http://sourceforge.net/projects/openlte

[18] HackRF - http://greatscottgadgets.com/hackrf/

[19] BladeRF - http://nuand.com/

[20] PiFM -

http://www.icrobotics.co.uk/wiki/index.php/Turnin

g_the_Raspberry_Pi_Into_an_FM_Transmitter

[21] REDHAWK -

http://redhawksdr.github.io/Documentation/

[22] Liquid-dsp: software-defined radio digital signal

processing library, http://liquidsdr.org/

[23] RTLSDR Scanner -

http://eartoearoak.com/software/rtlsdr-scanner

Fig. 5. Interactive RTL-SDR FM radio receiver flow graph

Fig. 6. 3x RTL-SDR data capture (3x_RTL_Sense.grc

FM radio receiver flow graph (RTL_FM_Radio.grc).

Fig. 7. 3x RTL-SDR FM receiver and data
(3x_RTL_FM_Demodulation.grc). 3x_RTL_Sense.grc).

